organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-(4-Chlorobenzoyl)-2,7-dimethoxynaphthalene

Ryosuke Mitsui,^a Kosuke Nakaema,^a Keiichi Noguchi,^b Akiko Okamoto^a and Noriyuki Yonezawa^a*

^aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology, 2-24-16 Naka-machi, Koganei, Tokyo 184-8588, Japan, and ^bInstrumentation Analysis Center, Tokyo University of Agriculture & Technology, 2-24-16 Naka-machi, Koganei, Tokyo 184-8588, Japan Correspondence e-mail: yonezawa@cc.tuat.ac.jp

Received 28 May 2008; accepted 9 June 2008

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.041; wR factor = 0.118; data-to-parameter ratio = 13.9.

In the title compound, C₁₉H₁₅ClO₃, the dihedral angle between the naphthalene ring system and the benzene ring is $72.06(7)^{\circ}$. The 4-chlorophenyl group and the carbonyl group are almost coplanar. An intermolecular $C-H \cdots O$ hydrogen bond is formed between an H atom of the 4chlorophenyl group and the O atom of one methoxy group, forming a zigzag chain along the *a* axis.

Related literature

For the structures of closely related compounds, see: Nakaema et al. (2007); Nakaema, Okamoto et al. (2008); Nakaema, Watanabe et al. (2008).

Experimental

Crystal data C19H15ClO3 $M_r = 326.76$

Orthorhombic, Pbca a = 6.6033 (3) Å

b = 16.0751 (7) Å
c = 30.2216 (12) Å
$V = 3208.0 (2) \text{ Å}^3$
Z = 8

Data collection

Rigaku R-AXIS RAPID diffractometer Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{\min} = 0.617, \ T_{\max} = 0.801$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.040$ 210 parameters $wR(F^2) = 0.118$ H-atom parameters constrained S = 1.11 $\Delta \rho_{\rm max} = 0.13 \ {\rm e} \ {\rm \AA}^ \Delta \rho_{\rm min} = -0.33 \text{ e } \text{\AA}^{-3}$ 2919 reflections

Cu $K\alpha$ radiation $\mu = 2.21 \text{ mm}^{-1}$

 $0.40 \times 0.15 \times 0.10 \text{ mm}$

54984 measured reflections

2919 independent reflections

2453 reflections with $I > 2\sigma(I)$

T = 296 K

 $R_{\rm int} = 0.032$

Table 1		
Hydrogen-bond geometr	y (Å, '	°)

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C13-H13\cdots O3^i$	0.93	2.58	3.401 (2)	148

Symmetry code: (i) x + 1, y, z.

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97.

This work was partially supported by the Shorai Foundation for the Promotion of Science & Engineering, Tokyo, Japan.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2299).

References

- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388
- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Nakaema, K., Okamoto, A., Imaizumi, M., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o612.
- Nakaema, K., Okamoto, A., Noguchi, K. & Yonezawa, N. (2007). Acta Cryst. E63, o4120.
- Nakaema, K., Watanabe, S., Okamoto, A., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o807.
- Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2008). E64, o1278 [doi:10.1107/S1600536808017297]

1-(4-Chlorobenzoyl)-2,7-dimethoxynaphthalene

R. Mitsui, K. Nakaema, K. Noguchi, A. Okamoto and N. Yonezawa

Comment

Recently we have reported the structure of 1,8-bis(4-chlorobenzoyl)-2,7-dimethoxynaphthalene (Nakaema *et al.*, 2007), 2-(4-chlorobenzoyl)-3,6-dimethoxynaphthalene (Nakaema, Okamoto *et al.*, 2008) and 1,8-dibenzoyl-2,7-dimethoxynaphthalene (Nakaema, Watanabe *et al.*, 2008). As part of our ongoing studies on the formation reaction and structure of the aroylated naphthalene derivatives synthesis and crystal structure analysis of the title compound, (I), were performed. The title compound was prepared by electrophilic aromatic aroylation reaction of 2,7-dimethoxynaphthalene with 4-chlorobenzoyl chloride.

An *ORTEPIII* (Burnett & Johnson, 1996) plot of (I) is displayed in Fig. 1. In the molecule of (I), the interplanar angle between the benzene ring (C12—C17) and the naphthalene ring (C1—C10) is 72.06 (7)°. The carbonyl group and the 4-chlorophenyl group are almost coplanar [O1—C11—C12—C17 torsion angle = -4.4 (2)°].

In the crystal structure, the molecular packing of (I) is mainly stabilized by van der Waals interaction. The molecules of (I) are aligned consecutively in stacks along the *a* axis (Fig. 2). Adjacent 4-chlorophenyl groups are exactly parallel, and the perpendicular distance between these planes is 3.660 (1) Å (Fig. 3). Figure 4 shows the herring-bone packing of the naphthalene ring in the crystal. The crystal packing is additionally stabilized by intermolecular C—H···O hydrogen bonding between the methoxy oxygen and a hydrogen atom of the nearby 4-chlorophenyl group of the adjacent molecule (C13—H13···O3ⁱ; Fig. 2 and Table 1).

Experimental

To a solution of 4-chlorobenzoyl chloride (77 mg, 0.44 mmol) and AlCl₃ (64 mg, 0.48 mmol) in nitrobenzene (1.0 ml) was added a solution of 2,7-dimethoxynaphthalene (0.40 *M* in nitrobenzene, 1.0 ml, 0.40 mmol) drop-wise at 0 °C. The reaction mixture was stirred for 6 h at 0 °C and immediately poured into H₂O (10 ml) and CHCl₃ (5 ml). The aqueous layer was extracted with CHCl₃ (3 × 5 ml). The combined organic layers were washed with aqueous 2 *M* NaOH (3 × 20 ml), brine (3 × 20 ml), and dried over MgSO₄ for overnight. The solvent was removed *in vacuo* and the crude material was purified by recrystallization from hexanes to give the title compound as a colorless platelets (m.p. 394.5–394.8 K, yield 102 mg, 78%).

Spectroscopic Data: ¹H NMR (300 MHz, CDCl₃) δ 7.87 (d, 1H), 7.78 (d, 2H), 7.72 (d, 1H), 7.39 (d, 2H), 7.15 (d, 1H), 7.02 (dd, 1H), 6.78 (d, 1H), 3.79 (s, 3H), 3.73 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 196.7, 159.0, 155.0, 139.7, 136.5, 133.0, 131.3, 130.8, 129.7, 128.8, 124.4, 121.1, 117.1, 110.1, 102.0, 56.2, 55.2; IR (KBr): 1667, 1628, 1587, 1575, 1513, 1278, 1241, 1047.

Anal. Calcd for C19H15ClO3: C 69.84, H 4.63. Found: C 69.61, H 4.74.

Refinement

All H atoms were found in a difference map and were subsequently refined as riding atoms, with C—H = 0.93 (aromatic) and 0.96 (methyl) Å, and with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of (I), showing the atom-labeling scheme and 50% probability displacement ellipsoids.

Fig. 2. The alignment of the molecules in the crystal structure, viewed along the *a* axis. H atoms are omitted.

Fig. 3. The alignment of the molecules in the crystal structure, viewed in an oblique direction. H atoms are omitted.

Fig. 4. The alignment of the molecules in the crystal structure, showing the herring-bone packing. H atoms are omitted.

1-(4-Chlorobenzoyl)-2,7-dimethoxynaphthalene

Crystal data	
C ₁₉ H ₁₅ ClO ₃	$D_{\rm x} = 1.353 {\rm ~Mg~m}^{-3}$
$M_r = 326.76$	Melting point = 394.5–394.8 K
Orthorhombic, Pbca	Cu K α radiation $\lambda = 1.54187$ Å
Hall symbol: -P 2ac 2ab	Cell parameters from 46869 reflections
a = 6.6033 (3) Å	$\theta = 3.1 - 68.1^{\circ}$

b = 16.0751 (7) Åc = 30.2216 (12) Å $V = 3208.0 (2) \text{ Å}^3$ Z = 8 $F_{000} = 1360$

Data collection

Rigaku R-AXIS RAPID diffractometer	2919 independent reflections
Radiation source: rotating anode	2453 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.032$
Detector resolution: 10.00 pixels mm ⁻¹	$\theta_{\text{max}} = 68.1^{\circ}$
T = 296 K	$\theta_{\min} = 5.5^{\circ}$
ω scans	$h = -7 \rightarrow 7$
Absorption correction: multi-scan (<i>ABSCOR</i> ; Higashi, 1995)	$k = -19 \rightarrow 19$
$T_{\min} = 0.617, \ T_{\max} = 0.801$	$l = -36 \rightarrow 36$
54984 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.040$	H-atom parameters constrained
$wR(F^2) = 0.118$	$w = 1/[\sigma^2(F_o^2) + (0.057P)^2 + 0.6411P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.11	$(\Delta/\sigma)_{\rm max} < 0.001$
2919 reflections	$\Delta \rho_{max} = 0.13 \text{ e} \text{ Å}^{-3}$
210 parameters	$\Delta \rho_{min} = -0.33 \text{ e } \text{\AA}^{-3}$
Duineans stars site lesstions starstant inconient diment	

 $\mu = 2.21 \text{ mm}^{-1}$

Platelet, colorless

 $0.40 \times 0.15 \times 0.10 \text{ mm}$

T = 296 K

Primary atom site location: structure-invariant direct Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cl1	1.30817 (12)	-0.12548 (4)	-0.02595 (2)	0.1046 (3)
01	0.6267 (2)	-0.08777 (8)	0.13581 (5)	0.0831 (4)
02	1.0971 (2)	-0.05318 (8)	0.18610 (5)	0.0795 (4)
O3	0.2593 (2)	0.17844 (8)	0.10247 (5)	0.0867 (4)
C1	0.8299 (2)	0.02580 (10)	0.15836 (5)	0.0558 (4)
C2	0.9962 (3)	0.02106 (11)	0.18585 (6)	0.0631 (4)
C3	1.0529 (3)	0.08948 (13)	0.21247 (6)	0.0725 (5)
Н3	1.1655	0.0861	0.2308	0.087*
C4	0.9409 (3)	0.16017 (12)	0.21089 (6)	0.0730 (5)
H4	0.9805	0.2053	0.2281	0.088*
C5	0.7672 (3)	0.16779 (10)	0.18420 (5)	0.0616 (4)
C6	0.6488 (3)	0.24079 (11)	0.18207 (6)	0.0725 (5)
H6	0.6863	0.2864	0.1991	0.087*
C7	0.4820 (3)	0.24673 (11)	0.15594 (6)	0.0723 (5)
H7	0.4072	0.2957	0.1552	0.087*
C8	0.4234 (3)	0.17821 (10)	0.13003 (6)	0.0644 (4)
С9	0.5338 (3)	0.10614 (10)	0.13091 (5)	0.0588 (4)
Н9	0.4928	0.0612	0.1137	0.071*
C10	0.7086 (2)	0.09875 (10)	0.15751 (5)	0.0546 (4)
C11	0.7780 (2)	-0.04641 (10)	0.12873 (6)	0.0572 (4)
C12	0.9101 (2)	-0.06394 (9)	0.09012 (5)	0.0542 (4)
C13	1.0749 (3)	-0.01439 (10)	0.07974 (6)	0.0632 (4)
H13	1.1037	0.0319	0.0971	0.076*
C14	1.1968 (3)	-0.03274 (12)	0.04398 (6)	0.0718 (5)
H14	1.3074	0.0007	0.0372	0.086*
C15	1.1529 (3)	-0.10086 (11)	0.01855 (6)	0.0700 (5)
C16	0.9900 (4)	-0.15030 (13)	0.02771 (7)	0.0839 (6)
H16	0.9615	-0.1961	0.0100	0.101*
C17	0.8687 (3)	-0.13182 (11)	0.06334 (7)	0.0736 (5)
H17	0.7573	-0.1653	0.0695	0.088*
C18	1.2729 (3)	-0.06178 (17)	0.21273 (7)	0.0894 (6)
H18A	1.3333	-0.1152	0.2075	0.107*
H18B	1.2363	-0.0571	0.2434	0.107*
H18C	1.3681	-0.0188	0.2053	0.107*
C19	0.1263 (3)	0.24781 (13)	0.10308 (9)	0.0925 (7)
H19A	0.0139	0.2374	0.0837	0.111*
H19B	0.1976	0.2965	0.0933	0.111*
H19C	0.0775	0.2564	0.1326	0.111*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.1391 (6)	0.0859 (4)	0.0887 (4)	0.0050 (3)	0.0444 (4)	-0.0088 (3)
01	0.0689 (8)	0.0647 (8)	0.1156 (11)	-0.0185 (6)	0.0228 (7)	-0.0237 (7)

supplementary materials

O2	0.0751 (8)	0.0765 (9)	0.0869 (9)	0.0094 (7)	-0.0210 (7)	-0.0126 (7)
03	0.0830 (9)	0.0638 (8)	0.1132 (11)	0.0160 (7)	-0.0117 (8)	-0.0033 (7)
C1	0.0563 (9)	0.0530 (8)	0.0580 (9)	-0.0081 (7)	0.0046 (7)	-0.0055 (7)
C2	0.0620 (10)	0.0644 (10)	0.0630 (10)	-0.0064 (8)	0.0019 (8)	-0.0055 (7)
C3	0.0746 (12)	0.0808 (13)	0.0622 (10)	-0.0154 (10)	-0.0051 (9)	-0.0111 (9)
C4	0.0908 (14)	0.0668 (11)	0.0613 (10)	-0.0239 (10)	0.0043 (9)	-0.0148 (8)
C5	0.0772 (11)	0.0532 (9)	0.0544 (8)	-0.0148 (8)	0.0137 (8)	-0.0073 (7)
C6	0.1007 (14)	0.0491 (9)	0.0677 (11)	-0.0127 (9)	0.0175 (10)	-0.0101 (7)
C7	0.0923 (13)	0.0464 (8)	0.0781 (12)	0.0022 (9)	0.0210 (11)	-0.0005 (8)
C8	0.0694 (11)	0.0526 (9)	0.0711 (10)	-0.0012 (8)	0.0096 (9)	0.0029 (7)
C9	0.0645 (10)	0.0483 (8)	0.0636 (9)	-0.0046 (7)	0.0062 (8)	-0.0052 (7)
C10	0.0628 (9)	0.0472 (8)	0.0539 (8)	-0.0094 (7)	0.0117 (7)	-0.0028 (6)
C11	0.0539 (9)	0.0465 (8)	0.0711 (10)	-0.0030 (7)	-0.0005 (7)	-0.0041 (7)
C12	0.0574 (9)	0.0442 (7)	0.0611 (9)	-0.0014 (7)	-0.0045 (7)	-0.0021 (6)
C13	0.0671 (10)	0.0543 (9)	0.0681 (10)	-0.0097 (8)	0.0017 (8)	-0.0088 (7)
C14	0.0748 (12)	0.0653 (11)	0.0752 (11)	-0.0092 (9)	0.0109 (9)	-0.0003 (9)
C15	0.0908 (13)	0.0565 (9)	0.0628 (10)	0.0047 (9)	0.0110 (9)	0.0016 (8)
C16	0.1138 (16)	0.0636 (11)	0.0742 (12)	-0.0172 (12)	0.0141 (11)	-0.0208 (9)
C17	0.0850 (12)	0.0592 (10)	0.0766 (12)	-0.0206 (9)	0.0066 (10)	-0.0143 (8)
C18	0.0724 (13)	0.1075 (17)	0.0884 (14)	0.0130 (12)	-0.0139 (11)	-0.0099 (12)
C19	0.0852 (14)	0.0726 (13)	0.1198 (18)	0.0214 (11)	0.0122 (13)	0.0190 (12)

Geometric parameters (Å, °)

Cl1—C15	1.7366 (19)	C8—C9	1.369 (2)
O1—C11	1.219 (2)	C9—C10	1.412 (2)
O2—C2	1.367 (2)	С9—Н9	0.9300
O2—C18	1.419 (2)	C11—C12	1.484 (2)
O3—C8	1.367 (2)	C12—C13	1.384 (2)
O3—C19	1.420 (2)	C12—C17	1.386 (2)
C1—C2	1.379 (2)	C13—C14	1.380 (2)
C1—C10	1.420 (2)	С13—Н13	0.9300
C1—C11	1.506 (2)	C14—C15	1.369 (3)
С2—С3	1.413 (2)	C14—H14	0.9300
C3—C4	1.356 (3)	C15—C16	1.366 (3)
С3—Н3	0.9300	C16—C17	1.375 (3)
C4—C5	1.408 (3)	С16—Н16	0.9300
C4—H4	0.9300	С17—Н17	0.9300
C5—C6	1.411 (3)	C18—H18A	0.9600
C5—C10	1.426 (2)	C18—H18B	0.9600
C6—C7	1.359 (3)	C18—H18C	0.9600
С6—Н6	0.9300	C19—H19A	0.9600
C7—C8	1.406 (3)	C19—H19B	0.9600
С7—Н7	0.9300	С19—Н19С	0.9600
C2—O2—C18	119.13 (16)	O1—C11—C1	120.20 (15)
C8—O3—C19	119.00 (17)	C12-C11-C1	118.69 (13)
C2-C1-C10	120.37 (15)	C13—C12—C17	118.41 (16)
C2—C1—C11	119.81 (15)	C13—C12—C11	122.07 (14)
C10—C1—C11	119.82 (14)	C17—C12—C11	119.52 (15)

supplementary materials

O2—C2—C1	116.08 (14)	C14—C13—C12	120.88 (16)
O2—C2—C3	123.20 (17)	C14—C13—H13	119.6
C1—C2—C3	120.71 (17)	C12—C13—H13	119.6
C4—C3—C2	119.21 (18)	C15—C14—C13	119.16 (17)
С4—С3—Н3	120.4	C15—C14—H14	120.4
С2—С3—Н3	120.4	C13—C14—H14	120.4
C3—C4—C5	122.49 (16)	C16—C15—C14	121.23 (18)
С3—С4—Н4	118.8	C16—C15—Cl1	119.29 (15)
C5—C4—H4	118.8	C14—C15—Cl1	119.48 (15)
C4—C5—C6	123.35 (16)	C15—C16—C17	119.48 (17)
C4—C5—C10	118.52 (17)	C15—C16—H16	120.3
C6—C5—C10	118.12 (17)	С17—С16—Н16	120.3
C7—C6—C5	122.26 (16)	C16—C17—C12	120.83 (18)
С7—С6—Н6	118.9	С16—С17—Н17	119.6
С5—С6—Н6	118.9	С12—С17—Н17	119.6
C6—C7—C8	119.47 (17)	O2-C18-H18A	109.5
С6—С7—Н7	120.3	O2-C18-H18B	109.5
С8—С7—Н7	120.3	H18A—C18—H18B	109.5
O3—C8—C9	115.86 (15)	O2—C18—H18C	109.5
O3—C8—C7	123.76 (16)	H18A—C18—H18C	109.5
C9—C8—C7	120.37 (18)	H18B—C18—H18C	109.5
C8—C9—C10	121.17 (15)	O3—C19—H19A	109.5
С8—С9—Н9	119.4	O3—C19—H19B	109.5
С10—С9—Н9	119.4	H19A—C19—H19B	109.5
C9—C10—C1	122.75 (14)	O3—C19—H19C	109.5
C9—C10—C5	118.59 (15)	H19A—C19—H19C	109.5
C1—C10—C5	118.66 (15)	H19B—C19—H19C	109.5
O1—C11—C12	121.07 (15)		
C18—O2—C2—C1	178.33 (18)	C2-C1-C10-C5	2.5 (2)
C18—O2—C2—C3	-2.9 (3)	C11—C1—C10—C5	-176.81 (14)
C10—C1—C2—O2	176.63 (15)	C4—C5—C10—C9	179.66 (15)
C11—C1—C2—O2	-4.0 (2)	C6—C5—C10—C9	-1.1 (2)
C10-C1-C2-C3	-2.2 (2)	C4—C5—C10—C1	-1.1 (2)
C11—C1—C2—C3	177.18 (16)	C6—C5—C10—C1	178.16 (14)
O2—C2—C3—C4	-178.39 (17)	C2-C1-C11-O1	110.8 (2)
C1—C2—C3—C4	0.3 (3)	C10-C1-C11-O1	-69.8 (2)
C2—C3—C4—C5	1.1 (3)	C2—C1—C11—C12	-71.3 (2)
C3—C4—C5—C6	-179.95 (17)	C10-C1-C11-C12	108.01 (17)
C3—C4—C5—C10	-0.7 (3)	O1-C11-C12-C13	175.57 (17)
C4—C5—C6—C7	179.79 (17)	C1—C11—C12—C13	-2.2 (2)
C10—C5—C6—C7	0.6 (3)	O1—C11—C12—C17	-4.4 (3)
C5—C6—C7—C8	0.1 (3)	C1—C11—C12—C17	177.83 (16)
C19—O3—C8—C9	173.79 (17)	C17—C12—C13—C14	-0.9 (3)
C19—O3—C8—C7	-7.0 (3)	C11—C12—C13—C14	179.13 (17)
C6—C7—C8—O3	-179.41 (17)	C12—C13—C14—C15	0.2 (3)
C6—C7—C8—C9	-0.3 (3)	C13—C14—C15—C16	0.6 (3)
O3—C8—C9—C10	178.92 (15)	C13—C14—C15—Cl1	-178.88 (15)
C7—C8—C9—C10	-0.3 (3)	C14—C15—C16—C17	-0.5 (3)
C8—C9—C10—C1	-178.25 (15)	Cl1—C15—C16—C17	178.95 (18)

C8—C9—C10—C5 C2—C1—C10—C9 C11—C1—C10—C9	1.0 (2) -178.27 (15) 2.4 (2)	C15—C16—C17—C12 C13—C12—C17—C16 C11—C12—C17—C16		-0.3 (3) 1.0 (3) -179.07 (19)
Hydrogen-bond geometry (Å, °)				
D—H···A	D—H	H···A	$D \cdots A$	D—H··· A
C13—H13···O3 ⁱ Symmetry codes: (i) x +1, y , z .	0.93	2.58	3.401 (2)	148

